US006094221A

United States Patent [(1] Patent Number: 6,094,221
Andersion 451 Date of Patent: Jul. 25, 2000
[54] SYSTEM AND METHOD FOR USING A OTHER PUBLICATIONS

SCRIPTING LANGUAGE TO SET DIGITAL
CAMERA DEVICE FEATURES

Martyn Williams, Review—NEC PC-DC401 Digital Still
Camera, AppleLink Newbytes, Mar. 15, 1996, pp. 1-3.

Inventor: Eric C. Andersion, 931 Brentwood Dr., . .
San J Calif. 95129 Primary Examiner—Wendy Garber
an Jose, L.alt. Assistant Examiner—Alicia M. Harrington
Appl. No.: 08/778.301 Attorney, Agent, or Firm—Carr & Ferrell LLP
ppl. No.: \
57 ABSTRACT
Filed: Jan. 2, 1997 7]
5)] Asystem and method for using scripts and selectable feature
Int. CL7 e HO04N 5/76, H04N 7/00, parameters to Conﬁgure dlgltal camera device features. The
HO4N 11/00; GOGF 9/45 digital camera includes memory storing scripts for providing
U:S. Clo 348/231; 348/552; 395/705 digital camera device features, an interface enabling a user
Field of Search 348/231, 233, to modify feature settings, a port connectable to a host
348/552, 232; 396/48, 429, 300; 395/705 computer for modifying or adding scripts to the memory,
. and a script manager for interpreting the scripts and the
References Cited feature settings. The digital camera further includes an
U.S. PATENT DOCUMENTS imaging device for gegerating a d?gitizefi image, and %mage
processors for enhancing the digitized image according to
4,704,699 11/1987 Farina et al. . the scripts and the selected feature settings. The digital
5,404,528 4/1995 Maha]an et al. v 395/705 camera still further includes command handlers for Conﬁg-
g’gg’ﬁ? gi iggg Ealﬁltfslii Zi‘ A ggﬁg;’ uring the imaging device and the image processors accord-
5477264 12/1995 Sarbadhikari et al. .. " 3agp3 1ng to the scripts and the feature settings.
5,493,335 2/1996 Parulski et al. 348/233
5,826,088 10/1998 Sitbon et al. ...cccoveveerrerernnnnns 395/705 12 Claims, 12 Drawing Sheets
410
605 ;
— | Function Decoder f
_— 610
Function Handlers
615
Error J
Handler
_I 620
Tokenizer
630 A
v ¢ ~ v
625 ;
_ Command Internal Pg’tg:amm"t‘g f 635
Interpreters 4»| Command emen
Handler Interpreter
T ;
I |
640\’ Command Variable 645
Table Table f

6,094,221

Sheet 1 of 12

Jul. 25, 2000

U.S. Patent

porao A\m\
Surdew] , “l"/

1
]
]
|
! 911
" 1o8euey
! 3dudg im
_ 1amdwo)
!
]
" <
! 8IL
1
]
pPmdwo)
N

6,094,221

Sheet 2 of 12

Jul. 25, 2000

U.S. Patent

8y
m I0}RIJUX) m
" > Sumug "
m Ol m
" ¢ .
oIt " 10 9€¢ !
Pmdwo)) SS3D0I1] X
1 HUHHW\VAHOU JOSUD !
oL , 3 S
AWImlv J0eLINU] [— an WMWG_W > sSew]
9IT” m - m 0 mw RER
" €z 4
! [4¢ N ¥ m A N 0
! [44 [444 A4
m p| T010N
! 14
| MN\/\

6,094,221

Sheet 3 of 12

Jul. 25, 2000

U.S. Patent

€ Old

811
m.

" 0se
221Aa(
£ Buibew|
JOWwa 10)08UU0) >
a|geAoway /s19}ing —’ oL
aoeJialu| oLl
O/l

HA1NdNOO

U.S. Patent

350

Jul. 25, 2000 Sheet 4 of 12

6,094,221

CONTROL APPLICATION 400
T\
TOOLBOX 402
N\
410 Va Script Manager
420\/\ External Command Handlers
430\/~ Image Processors
440\/‘ Camera Control System
DRIVERS 404
N\
406
KERNEL ~U
SYSTEM CONFIGURATION 408

FIG. 4

U.S. Patent

346

%_

Jul. 25,2000 Sheet 5 of 12 6,094,221
WORKING MEMORY
530
Y
Scripts
'RAM DISK ~ 2
SYSTEM AREA ~J

U.S. Patent Jul. 25,2000 Sheet 6 of 12 6,094,221

410
BN s a5
Function Decoder /
¢ /___,,610
Function Handlers
61
Error _f_ 5
Handler
620
Tokenizer _f
A
\ 4 # 630 v
625 .
| e et || S | oo
Interpreters | Comman
Handler Interpreter

t—t+—)

640 Command Variable 645
\-’ Table Table f

FIG. 6A

6,094,221

Sheet 7 of 12

Jul. 25, 2000

U.S. Patent

0clt
Jjoindwos

SOy wolj

d9 Ol

S

Oty
\

ainjeaH
pajos|as Jasn

labeuepy
1duiosg

Jeindwon a
811 * ~ Alowap
N\~ 14°15
ge) ()
8 58
HEG:
yduog aseq ejeq 9¢€8§ <
pajosjag Jasn iduog [V |
$1088800.d
Ne— c i 4 abew
8ve o O£ oEY !
R
o O o
o 32 o
o8 . ® 3 o5
=5 O O +
-0 v ad 2 5 o
c = g9 E
- Eoo®
© d
oY

slojpueH
puBWIWO)D

069/0¢cy

aolraQg
Buibew|

elawe)

U.S. Patent

700

Jul. 25, 2000

Sheet 8 of 12

6,094,221

(Start)

|-
.

FIG. 7A

y

\®|

Parse Statement

I/'?OZ

y

Analyze Program Statement

Get Command Code and Parameter

4

List from Command Table

.

Execute Program Statement

Build Data Structure

—

v

Execute Command

v

Receive Data Returned

719

No 720

Receive List?

Optional

l—___x—__l

| Constant |

Value
Matches?

Yes

N?

y

734 U
Yes Get N
) - 732
Stuff Value in Variable i
gl 736\ | SkipNx 4
| Advance 4, 16, 32 bytes }\'728 bytes

|

w

y

\ YeS
Another Parameter?

730

U.S. Patent

742 |

Jul. 25, 2000

internal or external?

Is the command

Send data structure
and response to
control application

:

Send command to
appropriate external
command handler

Sheet 9 of 12

6,094,221

716

Send data structure
to appropriate
internal command
handler

f750

v

Execute data
structure

|_—746

l

Forward response
back to command
interpreters

End

FIG. 7B

U.S. Patent Jul. 25, 2000 Sheet 10 of 12

C Stirt)

6,094,221

714
Create Command Data [,~805
\ Structure Header

v

Get Next Parameter |—" 810
v

Determine | 815
Parameter Type
830
@ 833
Variable
Constant or Correct 820

Variable?

(or don't Type?

care)

Yes 835
— Constant

Convert ASCII
Get Value of
|_—840
Variable Constant to
Value
[[
v

Append Value
to Data L—845
Structure

.

Increment Data Structure Size
by 4, 8, 16 Bytes Depending on P850
Data Type

No

FIG. 8

U.S. Patent Jul. 25, 2000 Sheet 11 of 12 6,094,221

Header 905

900

v

Command Code

~N310

Command Data Length

~ 315

Command Data Pointer

~ 920

Deallocation Routine Pointer

~925

Parameters 930

Parameter #1 Data

~_935

Parameter #2 Data

940

Parameter #3 Data

~ 945

(Command Send Data Structure)

FIG. 9

U.S. Patent Jul. 25, 2000 Sheet 12 of 12 6,094,221

1000

e

Header1005
1010
Command Error Code Y
1015
Command Data Length ’\192 0
Command Data Pointer
: : : 1025
Deallocation Routine Pointer I~/

Return Parametersi030

Parameter #1 Data < 1035
f\j

Parameter #2 Data 1040
: Ny

(Command Receive Data Structure)

FIG. 10

6,094,221

1

SYSTEM AND METHOD FOR USING A
SCRIPTING LANGUAGE TO SET DIGITAL
CAMERA DEVICE FEATURES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application relates to co-pending U.S. patent appli-
cation Ser. No. 08/631,173, entitled “System and Method for
Using a Unified Memory Architecture to Implement a Digi-
tal Camera Device,” which is hereby incorporated by ref-
erence.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to digital cameras and
more particularly to a system and method for using a
scripting language to set digital camera device features.

2. Description of the Background Art

A modern digital camera typically includes an imaging
device and a built-in computer. The imaging device captures
raw image information representing a scene and is con-
trolled by the built-in computer system. The built-in com-
puter system receives, processes and compresses the raw
image information before storing the compressed digital
information in an internal memory.

A typical digital camera enables a user to manipulate
mechanical buttons, rotatable and toggle switches, etc. to
select a few of the camera feature settings. However, the
remainder of the digital camera features are typically based
on built-in computer system programming. Original Equip-
ment Manufacturers (OEMs) set the software-based features
and software-based feature settings for each digital camera.
Accordingly, consumers examine both the camera hardware
and the camera programming to determine whether or not to
purchase the camera.

Except for a few OEM selected features, the camera
feature programming is stored in Read-Only Memory
(ROM). Thus, the majority of the camera feature program-
ming is not user accessible and thus not modifiable. Further,
new features cannot be added. A system and method are
needed for enabling an ordinary user to set digital camera
device features easily. Further, a system and method are
needed for enabling a programmer to add digital camera
device features which are also settable by the ordinary user.

SUMMARY OF THE INVENTION

In accordance with the present invention, a system and
method are disclosed for using scripts to implement digital
camera features. The digital camera includes memory stor-
ing scripts for providing digital camera device features, an
interface for receiving user selected feature settings, a script
manager for interpreting the scripts and the feature settings
to generate data structures, and a command handler for
configuring the camera to provide the camera features. The
digital camera further includes an imaging device for gen-
erating a digitized image and image processors for enhanc-
ing the digitized image. Since the user need only select the
camera feature script and then run and optionally interact
with the camera-configuring script, the ordinary user can
modify the camera features.

The digital camera includes a port connectable to host
computer for adding or modifying scripts to add or modify
available camera features. The host computer uses a text
editor application program to generate or modify scripts, and
optionally uses any error detection application program for

10

15

20

25

30

35

40

45

50

55

60

65

2

error testing the script. The camera may be connected to the
host computer for downloading the newly-generated
camera-configuring script into camera memory. Alternately,
the script can be loaded onto a removable memory card and
inserted into the camera. The added or modified script can be
run to configure the camera according to a selected feature
and setting.

The invention further provides a method for generating
data structures from a script. The method begins by receiv-
ing a feature setting command which includes a command
name, a feature name and a feature setting by an interface
from a user. Using a command table which includes a set of
command names and corresponding command codes, com-
mand codes are extracted based on the command names.
Using a command parameter table which includes corre-
sponding parameter formats, the parameters are extracted
based on the parameter format list. Parameters may include
feature names and settings. Accordingly, a data structure
which includes the command code and parameters, includ-
ing any feature settings in the specified format is then
generated by the script manager. The data structure is sent to
a command handler for execution and generation of respon-
sive data, which is sent back to the script manager for
processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a digital camera in
accordance with the present invention;

FIG. 2 is a block diagram illustrating the imaging device
of FIG. 1,

FIG. 3 is a block diagram illustrating the computer of FIG.
1

FIG. 4 is a memory map illustrating the ROM of FIG. 3;
FIG. 5 is a memory map illustrating the DRAM of FIG.

3;

FIG. 6A is a block diagram illustrating the FIG. 4 script
manager;

FIG. 6B is a block diagram illustrating operations of the
FIG. 1 camera;

FIG. 7A is a flowchart illustrating the preferred method
for generating a data structure from a script statement;

FIG. 7B is a flowchart illustrating the preferred method
for executing a command;

FIG. 8 is a flowchart further illustrating the step of
building a data structure of FIG. 7A;

FIG. 9 is a block diagram illustrating an external com-
mand send data structure; and

FIG. 10 is a block diagram illustrating an external com-
mand receive data structure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 is a block diagram of a digital camera 110 having
modifiable camera features such as exposure, focus, date/
time stamp, etc., and coupled to a host computer 120.
Camera 110 comprises an imaging device 114 coupled via a
system bus 116 to a computer 118. When a photographer
depresses an action button (not shown), computer 118
instructs imaging device 114 to take a picture of an object
112. Imaging device 114 optically captures and forwards
light-based image information representing object 112 via
system bus 116 to computer 118. Based on the camera 110
features, computer 118 performs various image processing
functions on the image information before storing the pro-
cessed data in internal memory (not shown).

6,094,221

3

Camera 110 uses scripts, which may be authored and error
tested on host computer 120, to configure its features. A
conventional text editor application program (not shown)
may be used on host computer 120 for generating a script
and an error reporter application program (not shown) may
be used on host computer 120 for error testing the script. If
the error reporter locates an error, then the script may be
edited until the error reporter determines that the script will
provide the intended camera 110 feature. Camera 110 may
be connected to host computer 120, and the script may be
downloaded from host computer 120 into camera 110 by
moving the script to a system folder (not shown) in camera
110 memory or to a flash disk.

FIG. 2 is a block diagram illustrating imaging device 114,
which comprises a lens 220, a filter 222, an image sensor
224, a timing generator 226, an analog signal processor 228,
an analog-to-digital (A/D) converter 230, an interface 232
and a motor 234. A detailed discussion of the preferred
elements of imaging device 114 is provided in U.S. patent
application Ser. No. 08/355,031, entitled “A System and
Method For Generating a Contrast Overlay as a Focus Assist
for an Imaging Device,” filed on Dec. 13, 1994, which is
hereby incorporated by reference.

Briefly, light-based information identifying object 112
passes along optical path 236 through lens 220 and filter 222
to image sensor 224. Image sensor 224 captures the light
data, generates light-based image information from the light
data, and routes the light-based image information through
analog signal processor 228, AID converter 230 and inter-
face 232. Interface 232 controls analog signal processor 228,
motor 234 and timing generator 226, and passes the light-
based image information via system bus 116 to computer
118.

FIG. 3 is a block diagram illustrating computer 118,
which comprises a central processing unit (CPU) 344,
Dynamic Random-Access Memory (DRAM) 346, an Input/
Output (I/0) interface 348 and Read-Only Memory (ROM)
350, each connected to system bus 116. Computer 118
optionally further includes a buffers/connector 352 coupled
to system bus 116, and a removable memory 354 coupled via
a path 356 to buffers/connector 352.

CPU 344 controls camera 110 operations and may include
a microprocessor device such as Motorola MPC821 manu-
factured by Motorola, Inc. of Schaumburg, I1l. or a Hitachi
SH3 manufactured by Hitachi America, Ltd. of Terrytown,
N.Y. CPU 344 optionally uses a multithreaded environment
for concurrent activation of multiple camera 110 control
functions. DRAM 346 is conventional DRAM selectively
allocated to various storage functions including image data
storage. I/O interface 348 permits host computer 120 or a
user via externally-mounted user controls and an external
LCD display panel to communicate with computer 118.

ROM 350 stores computer-readable program instructions
for controlling camera 110 operations. Buffers/connector
352 provides an interface, such as a Personal Computer
Memory Card International Standard (PCMCIA) slot, for
connecting a removable memory. Removable memory 354
is preferably a readily removable and replaceable non-
volatile data storage device such as a flash disk, and serves
as an additional image data storage area. A user who
possesses several removable memories 354 may replace a
full removable memory 354 with an empty removable
memory 354 to effectively expand the picture-taking capac-
ity of camera 110.

FIG. 4 is a memory map illustrating ROM 350, which
stores programs including a control application 400, a tool-

10

15

20

30

35

45

50

55

60

65

4

box 402, drivers 404, a kernel 406 and a system configu-
ration 408. Control application 400 comprises program
instructions for managing the various camera 110 functions
and executing script commands. Toolbox 402 comprises
selected function modules including a script manager 410,
external command handlers 420, image processors 430 and
camera control system 440. Script manager 410 operates as
a script interpreter by generating data structures from script
statements which are used to provide the camera 110 fea-
tures. External command handlers 420 manage the data
structures generated by script manager 410 and may store
parameter values in a programmable RAM (PRAM) such as
an EEPROM. Image processors 430 are programs for
enhancing (e.g., adjusting the contrast, sharpening, convert-
ing the image to gray-scale, etc.) the digital image received
from imaging device 114. Camera control system 440
receives and processes the data structures from the external
command handlers 420 for controlling camera functions.
System functions, I/O functions, camera hardware functions,
image processor functions are controlled by the control
application and toolbox routines receiving data structures
from external command handlers. Script manager 410
operations are described in greater detail with reference to
FIG. 6.

Drivers 404 comprise program instructions for controlling
various camera 110 hardware components, such as motor
234 (FIG. 2) and a flash (not shown). Kernel 406 comprises
program instructions providing basic underlying camera 110
services including synchronization routines, task creation,
activation and deactivation routines, resource management
routines, etc. System configuration 408 comprises program
instructions for providing initial camera 110 start-up rou-
tines such as the system boot routine and system diagnostics.

FIG. 5 is a memory map illustrating DRAM 346, which
includes a working memory 530, a RAM disk 532 and a
system area 534. Working memory 530 stores camera-
configuring scripts 536. Scripts 536 comprise program state-
ments which may include commands, which are loaded at
start-up by the configuration software from the RAM disk or
flash disk. A command is a function routine call comprising
a command name, optionally a send list and optionally a
receive list. An example of a command is “GetCameraStates
(1,‘hint’:32,hint)” where “GetCameraStates” is the com-
mand name, “1,hint’” is the send list, “:” separates the send
list from the receive list, and “3?,hint” is the receive list. The
command name GetCameraStates calls the function routine
for retrieving the status value of a particular feature. The “1”
in the send list indicates that only one request is being made.
The “‘hint’” indicates that the value requested is for the hint
feature. The “3?” in the receive list indicates that upon
receipt of responsive data three values should be skipped,
and the “hint” in the receive list specifies the variable in
which to store the fourth value. Combining both the send list
and the receive list in the command provides a simple
command structure.

A script for configuring the camera hint mode, which
enables the camera to select exposure type automatically
(AUTO), to set exposure such that the background is out of
focus (PORT), to set the exposure to capture as much depth
of field as possible (LAND), to shift exposure to provide a
fast shutter speed for moving objects (SPRT) or to maximize
depth of field for objects in very close proximity (CLOS), is
as follows:

6,094,221

#HINT_01.CSM @

name “Set Exposure Hint Mode” ©)
declare u:hint (©)
GetCameraStates(1,“hint”:3?,hint) 4)
get hint 5)

1: “AUTO”

2: “PORT”

3: “LAND”

4: “SPRT”

5: “CLOS”
end (®)
SetCameraStates(false,1,“hint” hint) @)
SetScriptStatus(1,“hint”) ®

Script manager 410 enables execution and re-execution of
the script for modifying and re-modifying the hint mode
setting. At any time, a user can instruct script manager 410
to execute the exposure hint feature script for setting or
resetting the hint feature.

Statement (1) is a comment identifying the DOS name of
the script. Statement (2) specifies the script description to be
provided upon user request. Statement (3) defines a variable
“hint” as an unsigned integer u. A variable type table is
shown below in table 1.

TABLE 1

Variable Types

Specifier Description

u 32 bits unsigned integer.

i 32 bits signed integer.

f 32 bits signed fractional part in signed 15 bits signed
integer and 16 bits fraction.

s 32 bytes characters containing a string up to 31
significant characters terminated by a null character.

n 16 bytes string contains DOS filename, format as
(8 characters).(3 characters) or (8 characters).

p 4 characters string.

b 32 bits of Boolean flags, each bit can be either true(1)
or false(0).

1 identifier used to indicate a label name.

Statement (4) is a command for retrieving the previously set
value of hint. Statement (5) is a user interaction statement
which comprises a command requesting that the user accept
or modify the hint mode setting. The list of values and
strings separated by colons is the feature value related to the
string name for that feature. The user selects a feature by
name, and the selected name’s value is returned in the
variable. Statement (6) ends the list in statement (5). State-
ment (7) instructs control application 400 to reconfigure the
hint mode as the user selects. Lastly, statement (8) commu-
nicates modifications to the user via the optional LCD status
display.

RAM disk 532 is a RAM-based data storage area for
storing the compressed light-based image information and is
typically organized in a sectored format similar to that of
conventional hard disk drives. RAM disk 532 may use a
standardized file system enabling the external host computer
system (not shown) to readily access stored data. Because
the information is actually stored in RAM, the data can be
easily and quickly retrieved. System area 534 typically
stores system error information for CPU 344 to report upon
restarting computer 118 after a system error occurs.

FIG. 6Ais a block diagram illustrating script manager 410
which includes a function decoder 605, function handlers
610, a tokenizer 620, a command interpreter 625, internal
command handlers 630, a programming statement inter-
preter 635, a command table 640 and a variable table 645.

10

15

20

25

30

35

40

45

55

60

65

6

Function decoder 605 is a program routine for managing
and decoding script messages received from control appli-
cation 400. Function decoder 605 forwards the decoded
script messages to function handlers 610, which are program
routines for managing these messages. If the script message
only includes simple instructions (i.e., instruction such as
initialize, abort, search for, GetName and Reset which do not
require script execution), then function handlers 610 per-
form the required functions and return the appropriate
responses via function decoder 605 back to control appli-
cation 400. If the script message includes a complex
instruction, (i.e., an instruction such as GetCameraStates or
SetCameraStates which requires script execution and
interpretation), then function handlers 610 forward the mes-
sage to tokenizer 620 for complex instruction handling.

Tokenizer 620 examines the syntax of the statements in
the script message to convert the statement’s ASCII codes
into tokens. Tokenizer 620 passes tokens corresponding to
script commands to command interpreters 625 and tokens
corresponding to Arithmetic Logic Unit (ALU) statements,
Input/Output (I/O) statements, control statements and docu-
mentation statements to programming statement interpreter
635.

Command interpreters 625 generate data structures rep-
resenting the tokens. Command interpreters 625 forward the
data structures for external commands (ie., commands
which are used system-wide such as GetCameraStates or
SetCameraStates and which require computations or infor-
mation exchange with external components) to external
command handlers 420, by passing them back as a response
via the function decoder 605. The control application then
passes the response to the appropriate external command
handler 420 for processing based on the command code.
Command interpreters 625 pass data structures for internal
script commands (i.e., commands which are dedicated to
script manager 410 such as Wait, Write, GetTimeString or
GetDateString) are passed to internal command handler 630.

To indicate whether a command is an internal command
or an external command, each command entry in the com-
mand table may include an external/internal flag, command
interpreter 625 may include an external/internal command
table, or the command values may indicate accordingly. To
create a data structure from a script command, command
interpreters 625 use command table 640 and variable table
645. An example command table 640 is shown in table 2.

TABLE 2

Command Table

Command Command Parameter Parameter
Name Code Count Type List
“GetCameraStates” 0 x 0005 2 1,16,0,0,0,0
“GetCameraCapabilities™ 0 x 0006 2 1,16,0,0,0,0
“SetCameraStates™ 0 x 0007 3 4,1,17,0,0,0
“GetCameraStatus” 0 x 0008 0 0,0,0,0,0,0

>

The first column indicates command names, the second
column indicates command codes, third column indicates
the number of parameters in the parameter type send lists,
and the fourth column indicates parameter type send list
formats. It will be appreciated that other commands and
other parameter type lists may be included in command table
2.

In conjunction with the parameter type list of command
table 2, command interpreters 625 use a parameter type table
3 as follows:

6,094,221

7

TABLE 3

Parameter Type Table

Parameter Value Description

™

culnteger integer between 0 and 4G, 32 bit unsigned
integer, a preceding Ox or Ox means hex value,
otherwise decimal value.

integer between —2G and +2G, 32 bit signed
integer, a preceding Ox or Ox means hex value,
otherwise decimal value.

fixed integer between -32767.99999 . . . and
+32767.99999 . . ., 32 bit signed fractional part in
signed 15-bit signed integer and 16-bit
fraction.

Boolean and bitflags; 32 bits of Boolean flags,
each bit can be either true(1) or false(0), “Ob”
means Boolean, “Ox” or “Ox” means hex,
otherwise decimal value.

parameter name.

DOS filename; 16 byte string surrounded by
double quotes. The format is an up to 8
character filename, followed by a period, and a
up to three character extension or up to 8
character filename; example “myscript.csm.”

a sequence of characters surrounded by double
quotes, max length. is 31, no double quotes
inside the character string.

parameter list.

parameter/value list.

DOS filename list.

unsigned integer list.

clnteger

@

cFixed

©)
cBitFlags

®

cPName
cName

(6)
M

cString (©))

cPList
cPVList
cNameList
cUList

(16)
an
(18)
19

For example, the command “GetCameraCapabilities”
parameter list “1,16” specifies that the send list must contain
a cUlnteger, which is defined as a 32 bit unsigned integer
between 0 and 4 G, followed by a cPList which is defined
as a parameter list. A cPList is simply a list of any length of
pName type values. Command interpreters 625 use tables 2
and 3 to compare predefined script formats with actual
scripts for performing script command error checking. Error
checking is defined in greater detail with reference to FIGS.
7 and 8. Generation of a data structure by command inter-
preters 625 is described in detail with reference to FIGS.
7-10.

An example variable (or parameter) table is illustrated in
table 4 as follows:

TABLE 4

Variable Table

Variable Name Type Value
“count” 1 0
“valu” 3 1.25

External and internal command handlers 420 and 650
accordingly send image processor parameters to image
processors 430 for setting camera 110 software-based
features, or camera parameters to the camera control system
440 for setting capture-related features. Although not shown,
command handlers 420/650 may send I/O parameters to [/O
interface 348 for setting I/O features or other system or
control parameters to other managers for setting other cam-
era 110 features. The operations of external command han-
dlers 420 and internal command handlers 630 are described
below in greater detail with reference to FIG. 7B.

Programming statement interpreter 635 uses variable
table 645 to process a programming statement such as
control, I/0, ALU or documentation statements. For
example, a programming statement may be a definition, a
mathematical expression, a logical expression, etc.

10

15

20

25

30

35

40

45

50

55

60

65

8

If one of the script manager 410 components including the
tokenizer 620, the command interpreters 625, the program-
ming statement interpreter 635, the internal command han-
dler 630 locates an error in the script message, then the script
manager 410 component sends an error message to an error
handler 615 of function handlers 610. The error handler 615
recognizes error codes in the error message, stops script
execution and passes an appropriate error message respon-
sively back via function decoder 605 to I/O interface 348.

FIG. 6B is a block diagram illustrating the operations of
camera 100. Imaging device 114 captures and converts an
image to a digitized image, and stores the digitized image in
memory 354. Image processor 430 takes the raw digitized
image and adds image enhancements such as contrast
adjustment, sharpening, etc. Image processor 430 stores the
enhanced image again in memory 354.

The operations of imaging device 114 and of image
processors 430 can be controlled by active scripts and script
feature settings. While executing a script, the script manager
410 retrieves and displays the script feature setting
currently-stored in the script data base 536 for the selected
script. The script manager 410 can interact with a user via
I/O interface 348 to enable modification or the currently-
stored script feature setting in order to modify the camera
device feature. Script manager 410 generates data structures
representing commands within the script, as described
below with reference to FIGS. 7A and 8-10.

Script manager 410 sends the data structures to external/
internal command handlers 420/650, which accordingly
send image processor parameters to image processors 430
for setting camera 110 software-based features, camera
parameters to camera control software for setting capture
features, or other system or control parameters to other
appropriate managers. It will be appreciated that a program-
mer may use host computer 120 to add additional scripts to
script data base 536, for adding additional functions and
features to camera 110.

FIG. 7A is a flowchart illustrating a method 700 for
managing script 536 statements. Method 700 begins in step
702 by tokenizer 620 receiving and parsing a statement. If
tokenizer 620 in step 704 determines that the program
statement is not a script command, then tokenizer 620 sends
the tokens to programming statement interpreters 635,
which in step 706 analyze the statement. Programming
statement interpreter 635 in step 708 executes the program
statement conventionally. Examples of these statements
include control, I/O, ALU and documentation statements.
Tokenizer 620 in step 710 determines whether there is
another statement in script 536. If so, then tokenizer 620
returns to step 702. Otherwise, method 700 ends.

If tokenizer 620 in step 704 determines that the program
statement is a script command, then tokenizer 620 sends the
token to command interpreters 625 which in step 712
retrieve the command code and the parameter list from the
command table 640 illustrated above in Table 2 described
with reference to FIG. 6. Using the command code and the
parameter list, command interpreters 625 in step 714 scan
the parameters and build a data structure. The step of
building a data structure from a command is described in
detail with reference to FIG. 8.

Command interpreters 625 in step 716 forward data
structures representing external commands via a response
through the function decoder 605 back to the control appli-
cation 400 to external command handler 420 or data struc-
tures representing internal commands to internal command
handlers 630 for command execution. Command execution
is described below with reference to FIG. 7B.

6,094,221

9

Command interpreters 625 in step 718 receive responsive
data returned from command handlers 420 or 650. Com-
mand interpreters 625 in step 719 examine the data returned
to determine if the data indicates an error. If so, then
command interpreters 726 jump to step 726 to report the
error. Otherwise, command interpreters 625 continue with
step 720 to determine whether the current command
includes a receive list. If not, then method 700 returns to step
710. If so, then command interpreters 625 in step 722
examine the expected parameter type in the receive list.

If the expected parameter type is a constant, then com-
mand interpreters 625 determine whether the responsive
data matches the expected parameter type. If not, then
command interpreters 625 inform the error handler 615,
which in step 726 reports the error and method 700 then
ends. Otherwise, command interpreters 625 in step 728
advance four bytes for an integer value, sixteen bytes for a
DOS name or thirty-two bytes for a character string to index
to the next parameter. Command interpreters 625 in step 730
determine whether another parameter remains in the receive
list. If so, then command interpreters 625 return to step 722.
Otherwise, command interpreters 625 return to step 710.

If command interpreters 625 in step 722 determine that
the parameter type is a variable, then command interpreters
625 in step 731 determine if the variable has been defined.
If not, then method 700 jumps to step 726 to report the error.
Otherwise, command interpreters 625 in step 732 stuff the
received data value into the variable and proceed to step 728
to index to the next parameter.

If command interpreters 625 in step 728 determine that
the parameter type is a number N followed by the symbol
“7”_ then command interpreters 625 in step 734 extract the
value N. Command interpreters 625 in step 736 index past
Nx4 bytes of responsive data, i.e. N parameters. The type
“N?” is used to index past parameters which are known to
be unnecessary for performing the current instruction. For
example, the command “GetCameraStates(1, ‘fmod’:37,
abc)” requests the current state of camera 110 focus mode.
The responsive data may be “1,‘fmod’,1,25” where “25
represents the current focus mode state. Parameter “3?”
causes command interpreters 625 to jump over the first three
parameters “1,‘fmod’,1”, and on the next loop stuff the value
“25” into the variable “abc.” Thus, the function “N?”
eliminates examination of parameters known to be unnec-
essary. Command interpreters 625 then proceed to step 734.

FIG. 7B is a flowchart illustrating details of the method
716 for executing a command. Method 716 begins with step
740 by command interpreters 625 determining whether the
command is an external command or an internal command.
If the command is an external command, then command
interpreters 625 in step 742 sends the data structure (which
represents the command and the send list) and the response
code to function decoder 605, which decodes and forwards
the data structure and response code to control application
400. Control application 400 in step 744 sends the data
structures to the appropriate external command handler 420.
The appropriate external command handler 420 in step 746
executes the command data structure and in step 748 for-
wards the appropriate response data back to the control
application, which in turn calls the script manager 410 with
the result. The function decoder 605 sends the response data
back to command interpreters 625. Method 716 then ends.

If in step 740 command interpreters 625 determine that
the command is an internal command, then command inter-
preters 625 in step 750 sends the data structure (which
represents the command and the send list) to the appropriate
internal command handler 630. Method 716 then jumps to
step 746.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 8 further illustrates step 714 of building a data
structure. Step 714 begins in step 805 by command inter-
preters 625 creating a command data structure header.
Command interpreters 625 in step 810 get the next param-
eter and in step 815 determine the parameter type. Command
interpreters 625 in step 820 determine if the parameter
matches the expected parameter type. For example, by
examining table 2 and table 3, command interpreters 625
expect the command “GetCameraStates” to be followed by
a send list comprising a cUInteger (1) in turn followed by a
cPList (16). If the selected parameter is not a member of the
expected parameter type, then command interpreters 625
forward a message to error handler 615, which in step 825
reports the error via a response through the function decoder
605 to the control application 400. The control application
reports the error to the user. As illustrated by jump symbol
“A,” method 700 then ends

If the selected parameter is a member of the expected
parameter type, then command interpreters 625 in step 830
determine whether the parameter is a constant or a variable.
If the parameter is a variable, then command interpreters 625
in step 833 determine if the variable is defined. If not, then
method 714 jumps to step 726 (FIG. 7A) to report the error.
Otherwise, command interpreters 625 in step 835 retrieve
the value of the variable. If the parameter is a constant, then
command interpreters 625 convert the ASCII constant to a
value. In either case, command interpreters 625 in step 845
append the value to the send data structure. Command
interpreters 625 in step 850 increment the data structure size
in the header by 4, 8 or 16 bytes depending on the data type.
Command interpreters 625 in step 855 determine if the
retrieved parameter is the last parameter. If so, then method
714 ends. If not, then method 714 returns to step 810.

FIG. 9 is a block diagram illustrating a command send
data structure 900, which comprises a header 905 and
appended parameters 930, generated by command interpret-
ers 625. Header 905 comprises a command code 910, a
command data length 915, a command data pointer 920 and
a deallocation routine pointer 925. Parameters 930 may
include a plurality of appended parameters 935-945.

For the example command “GetCameraStates(1,
‘fmod’:3?,fmod)”, command interpreters 625 retrieve the
command code “0x0005” for “GetCameraStates” as com-
mand code 910, set command data length 915 to zero and
place the value nil into command data pointer 920. Com-
mand interpreters 625 append an address of the subroutine
which will dispose of the data structure as a deallocation
routine pointer 925. Command interpreters 625 retrieve the
parameter “1” and determine that it matches the expected
parameter type cUInteger. Since the parameter is a constant,
command interpreters 625 append the 32-bit parameter
value representing “1” to the data structure as parameter #1
data 935. Command interpreters 625 modify command data
pointer 920 to point to parameter #1 data 935, and increment
command data length 915 by four bytes. Command inter-
preters 625 retrieve the parameter “fmod” and determine
that it matches the expected parameter type cPList. Since the
parameter type is a parameter name constant, external com-
mand interpreters 625 append the constant “fmod” to send
data structure 900 as parameter #2 data 940. Command
interpreters 625 increment command data length 915 by
another four bytes. In this example, there are only two
parameters and command data length is eight bytes.

FIG. 10 is a block diagram illustrating a command
retrieve data structure 1000, which comprises a header 1005
and return parameters 1030. Header 1005 comprises a
command error code 1010, a command data length 1015, a

6,094,221

11

command data pointer 1020 and a deallocation routine
pointer 1025. Return parameters 1030 may include param-
eter #1 data 1035 and parameter #2 data 1040. Any number
of parameters may be included.

As described in FIG. 7A, command interpreters 625
receive the command receive data structure 1000 as respon-
sive data returned from either external command handlers
420 or internal command handlers 630. Command interpret-
ers 625 process the receive list “3? fmod” with the data
structure 1030 values.

The foregoing description of the preferred embodiments
of the invention is by way of example only, and other
variations of the above-described embodiments and methods
are provided by the present invention. Components of this
invention may be implemented using a programmed general
purpose digital computer, using application specific inte-
grated circuits, or using a network of interconnected con-
ventional components and circuits. The embodiments
described herein have been presented for purposes of illus-
tration and are not intended to be exhaustive or limiting.
Many variations and modifications are possible in light of
the foregoing teaching. The system is limited only by the
following claims:

What is claimed is:

1. A digital camera system comprising:

an imaging device for receiving picture data;

script memory coupled to the imaging device for storing
camera-configuring scripts;
an interface coupled to the script memory for enabling the
selection of a script feature setting;
a script manager, coupled to the interface for interpreting
the script and the script feature setting, and including
a command interpreter coupled to the script memory,
a programming statement interpreter coupled to the
script memory, and

a tokenizer for determining when to send an instruction
to the command interpreter and when to send an
instruction to the programming statement interpreter;

a command handler coupled to the script manager for
processing the script based on the script feature setting
to provide a camera feature;

control application memory coupled to the imaging
device for controlling the camera features based on
camera parameters; and

an image processor coupled to the command handler for
controlling a processing of the picture data based on the
script feature setting.

2. The system of claim 1, wherein the command handler

includes

an external command handler coupled to the script man-
ager for processing external commands; and

an internal command handler coupled to the script man-
ager for processing internal commands.

3. A digital camera system comprising:

an imaging device for receiving picture data;

script memory coupled to the imaging device for storing
camera-configuring scripts and a command;

an interface coupled to the script memory for enabling the
selection of a script feature setting;

a script manager coupled to the interface for interpreting
the script and the script feature setting, and including an
error handler for providing an error report to the
interface upon indication of an error in the script, and
further including a command table for interpreting the
command, and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

a command handler coupled to the script manager for
processing the script based on the script feature setting
to provide a camera feature.
4. The system of claim 3, further comprising a commu-
nications port coupled to the script memory for transferring
different scripts from an external host computer to the script
memory.
5. A digital camera system, comprising:
means for receiving picture data;
script means, coupled to the means for receiving, for
storing a camera-configuring script;
interface means, coupled to the script means, for enabling
selection of a script feature setting;
interpretation means, coupled to the interface means, for
interpreting the script and the script feature setting, and
including
a command interpreter means coupled to the means for
receiving,

a programming statement interpreter means coupled to
the means for receiving; and

a tokenizer for determining when to send an instruction
to the command interpreter means and when to send
an instruction to the programming statement inter-
preter means,

command handler means, coupled to the interpretation
means, for processing the script based on the script
feature setting to provide a camera feature;

control means, coupled to the means for receiving, for
controlling the camera features based on camera
parameters; and

image processor means, coupled to the command handler
means, for controlling a processing of the picture data
based on the script feature setting.

6. The system of claim 5, wherein the command handler

means includes:

external command handler means coupled to the inter-
pretation means for processing external commands;
and

internal command handler means coupled to the interpre-
tation means for processing internal commands.

7. A system for using parameter tables to generate a data
structure for setting digital camera device features, compris-
ing:

means for receiving including an I/O interface for receiv-
ing a camera feature setting command which includes
a command name, a feature name and a feature setting
from a user;

a command table, coupled to the means for receiving,
including command names and corresponding com-
mand codes;

a feature table, coupled to the means for receiving,
including features, corresponding feature codes, corre-
sponding available feature settings and corresponding
feature setting codes;

an interpreter, coupled to the means for receiving, for
using the command table and the feature table to
generate a data structure having the command code
representing the command, the feature code represent-
ing the feature and the feature setting code representing
the feature setting; and

a command handler, coupled to the interpreter, for pro-
cessing data structures.

8. A system for using parameter tables to generate a data

structure for setting digital camera device features, compris-
ing:

6,094,221

13 14
means for receiving a camera feature setting command generating, by the script manager, a message packet
which includes a command name, a feature name and which includes the command code, the feature code
a feature setting; and the feature setting code; and
a command table, coupled to the means for receiving, providing an error report upon indication of an error to the
including command names and corresponding com- 3 interface. . .
mand codes: 10. The method of claim 9, further comprising, after

generating, the step of using a control application to modify
camera parameters for setting camera device features.
11. A method of using parameter tables to generate a data

a feature table, coupled to the means for receiving,
including features, corresponding feature codes, corre-

sponding available feature settings and corresponding 1o Structure for setting digital camera device features, compris-
feature setting codes; ing the steps of:

an interpreter, coupled to the means for receiving, for receiving, by an interface, a feature setting command
using the command table and the feature table to which includes a command name, a feature name and
generate a data structure having the command code a feature setting;
representing the command, the feature code represent- 15 using, by a script manager, a command table which
ing the feature and the feature setting code representing includes a set of command names and corresponding
the feature setting; and command codes to extract command codes based on

the command names;

using, by the script manager, a feature table which
includes a plurality of feature sets, each set including a
feature name, a corresponding feature code, corre-
sponding available feature settings and corresponding
feature setting code, to extract the corresponding fea-

an error handler, coupled to the interpreter, for providing
an error report upon indication of an error.
9. A method of using parameter tables to generate a data 5
structure for setting digital camera device features, compris-
ing the steps of:

receiving, by an interface, a feature setting command ture code and corresponding feature setting code based
which includes a command name, a feature name and on the received feature name and the received feature
a feature setting; 25 setting;

using, by a script manager, a command table which generating, by the script manager, a data structure which
includes a set of command names and corresponding includes the command code, the feature code and the
command codes to extract command codes based on feature setting code;
the command names; forwarding, by the script manager, the data structure to a

using, by the script manager, a feature table which 30 command handler for processing the data structure; and
includes a plurality of feature sets, each set including a sending, by the command handler, responsive data in a
feature name, a corresponding feature code, corre- predetermined format back to the script manager.
sponding available feature settings and corresponding 12. The method of claim 11, further comprising ignoring,
feature setting code, to extract the corresponding fea- 5 by the script manager, a portion of the responsive data based

ture code and corresponding feature setting code based
on the received feature name and the received feature
setting; * % % % %

on a flag in the command.

