United States Patent (19

Anderson et al.

VA 0 O
US005577250A

(111 Patent Number: 5,577,250
451 Date of Patent: Nov. 19, 1996

(54]

(75]

(73]

(21]
(22]

(63]

(51]
(52]

(58]
[56]

PROGRAMMING MODEL FOR A 5,440,740 8/1995 Chen et al. .ccicerereninrireennens 395/650
COPROCESSOR ON A COMPUTER SYSTEM OTHER PUBLICATIONS
Inventors: Eric C. Anderson, San Jose, Calif.; “Support for Multiple DSP Functions a Must”, K. Ulery,
Hugh B. Svendsen, Atlanta, Ga.; A. Electrical Engg. Times, Feb. 18, 1991.
Phillip Sohn, Campbell, Calif. Bindra, Ashok, “DSP Coprocessors Move to Mother-
boards,” Electronic Engineering Times, pp. 35 and 75 (Jan.
Assignee: Apple Computer, Inc., Cupertino, 27, 1992).
Calif. Ulery, Kerg, “Support for Multiple DSP Functions a Must,”
Electronic Engineering Times, p. 43 (Feb. 18, 1991).
Appl. No.: 361,842 Primary Examiner—Kevin A. Kriess
Filed: Dec. 20, 1994 Assistant Examiner—Kakali Chaki
Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & Zaf-
Related U.S. Application Data man
Continuation of Ser. No. 837,326, Feb. 18, 1992. [57] ABSTRACT
Int. CL® ..o GO6F 9/44; GO6F 15/00 A computer system having a processor and a coprocessor, 2
US. CL 395/670: 364/DIG. 1: method and apparatus for developing and executing tasks on
364/221.4: 364/228.6: 364/22,8 1: 364{280, a Coprocessor. Ateamwork operating system for ulilizing the
’ 364/281.3: 364/281.8 Ccoprocessor, e.g. a digital signal processor, resides in part on
Field of Search 39'5 /700. 650 the processor and in part on the coprocessor. Such a team-
’ work operating system provides for optimum throughput of
References Cited work through the coprocessor. An Application Programming
Interface (API) is provided to facilitate the development of
U.S. PATENT DOCUMENTS host application programs that will utilize the coprocessor. A
. Task Programming Interface (TPI) and a Task Unit Defini-
iggggj gﬁgg; gg{:gfviiy et al tion Language (TUDL) are provided to facilitate the devel-
4787026 11/1988 Barnesetal. . opment of coprocessor code for execution on the coproces-
4,882,674 11/1989 Quint et al. . sor.”
5,283,900 2/1994 Frankel et al. ..cccccoeercercccennne 395/700
5,287,511 2/1994 Robinson et al. ...covererrrrverenae 395/700 21 Claims, 6 Drawing Sheets
105
Data Storage 4 A
Device 102 103
Processor Ram
101 BUS |
106
Keyboard I
103
Rom
. J
107 Cursor
Control
Device
Digital
Signal
Processor
108
Display
Device
Audio
Port
110
Telecomm

Port

U.S. Patent Nov. 19, 1996 Sheet 1 of 6 5,577,250

105
Data Storage a I
Device 102 103
Processor Ram
101 BUS
106
Keyboard
103
Rom
\ J
107 Cursor
Control
Device 109
Digital
Signal
Processor
108
Display
Device
110
Audio
Port
110
Telecomm
Port

FIGURE 1

5,577,250

Sheet 2 of 6

Nov. 19, 1996

U.S. Patent

(44

612 /

'

sydnarajuy

"0y “eye(] ‘soroydewrag
A10WIN pareys

A

\

(44
1AL SO d5d
L1¢
QATINDIIXH
91¢ G1e ¥ic
S3OTAIIG SIDTAIRG S3DTATIG
Sunped | jonuo) O/1
€1c
aoejIauf Sunuureido1] SMpoA
wagshs SunpaadO 4Sa
01¢
I[MPON dSU

4
¥0c
I2A11(] 3SOH dsd
60¢
SI9ZeURIA] UOT}edO[[Y
80¢ 20C 90¢
s1a8euep s1adeuey
aImjonng SIVIAISG 3d1A9(J
ejeq O/1 3 JULID
<0¢

soeyIau Sunuurer8oig uonedddy

L38vUviN s /

10¢

yuarD) /suonpedrjddy 3so

[4iré

7 2In31]

U.S. Patent

Continue
without DSP?

Yes

v

Nov. 19, 1996 Sheet 3 of 6

Figure 3

Start

DSP Coprocessor(s)
status query

DSP
Coprocessor(s)
Available?

Yes
Y

Execute Application
without DSP

Client Sign-in to DSP
Coprocessor(s)

305

Create DSP Task
Structure

Allocate Resources for
DSP Task Structure and

. 304 insert information from

Terminate Execution
of Application

DSP Task Unit

Insert DSP Task into
DSP Run List

—

Activate DSP Task
’ for Execution

5,577,250

301

302

306

307

308

309

310

U.S. Patent Nov. 19, 1996 Sheet 4 of 6 5,577,250
Figure 4 |

Start

Deactivate DSP Task 401
Wait for DSP Task

Deactivation 402
Acknowledgement

]

Remove the DSP
Task From DSP Run 403
. List

Deallocate DSP Task
Allocated Resources

404

Client Signout from 405
DSP Coprocessor

U.S. Patent Nov. 19, 1996 Sheet 5 of 6 5,577,250
Figure 5

Start

Write, test and debug
DSP Program Code

Create DSP Task Unit
Structure

Insert Functional DSP program
code, data, variables into DSP 503
Task Unit Structure

Assemble, link and
prepare for use by host
application

Store DSP Task Unit on
Disk

5,577,250

Sheet 6 of 6

Nov. 19, 1996

U.S. Patent

¥09
HEEEIgIS
OdId

€09
eje(opny
gsaxduroday

9 23]

<09
44404
Odid

109
el orpny
passazduio)

T
—

5,577,250

1

PROGRAMMING MODEL FOR A
COPROCESSOR ON A COMPUTER SYSTEM

This is a continuation of application Ser. No. 07/837,326,
filed Feb. 18, 1992.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
operating systems and application development, in particu-
lar a programming model for developing host computer
applications on a computer system having a coprocessor.

2. Description of the Related Art

Computer systems utilizing coprocessors for performing
specialized functions or increasing processor performance
and functionality, are well known in the art. Coprocessors
are used for generating enhanced graphical images and
performing arithmetic functions. As multimedia applications
arc being developed for computer systems, the desire and
need for digital signal processing (DSP) coprocessors has
emerged. Mulitmedia applications refer to applications
which integrate different forms of communication to create
a more effective presentation of information, e.g. a “docu-
ment” that has text, video and audio portions.

Digital signal processing is the processing of digitized
signals. Digitized signals are digital representations of ana-
log signals. Analog signals may be sounds, images, speech
or any one or morc ensembles of one or more series with a
dependent variable (e.g. time or space). To correctly process
such digitized signals, it is necessary to know at what sample
rate the signal was digitized and the format of the digital bits
used to represent the analog signal. With this information,
the digitized signal can be manipulated by application
software programs. The resulting data can then be stored or
converted back into an analog signal. An application pro-
gram that utilizes a DSP coprocessor is hereinafter referred
to as a host DSP application, while the code that is actually
executing on the DSP is referred to as a DSP program. For
example, a host DSP application may be a program to create
and edit music, while a DSP program may be used for
compressing, decompressing and mixing stored audio data
for playback.

In some instances, host DSP applications are supported
via dedicated hardware components, e.g. a modem or audio
interface or a graphical display interface. It is desirable to
have a single DSP coprocessor support multiple applications
for inherent economies, e.g. reduced system hardware costs.
With the growth of multimedia applications, such digital
signal application requirements will grow accordingly.

The integration of a coprocessor into a computer system
will typically take one of three forms: shared command
stream, multi-processing and satellite. In a shared command
stream integration, coprocessor task requests are placed
directly into an input stream processed by the host processor.
The way the coprocessor receives the tasks may be in one of
two manners. In a first manner, the coprocessor tasks are
forwarded by the host processor to the coprocessor for
execution. In a second manner, the coprocessor monitors bus
activity looking for coprocessor instructions. Upon detection
of a coprocessor instruction, the coprocessor communicates
with the host processor, e.g. via a hardware handshake, and
processes the instruction. A coprocessor for carrying out
mathematical equations, such as a floating point processor,
will typically have a shared command stream integration.

20

25

45

50

55

60

65

2

In a multi-processing integration, the coprocessor has it’s
own operating system. Communication with the host pro-
cessor operating system is through shared memory, hard-
ware mailboxes or other resources. In a satellite integration,
the coprocessor may receive commands, programs and data
from a host processor for carrying out tasks. Typically, a
coprocessor shares an I/O channel or other limited intercon-
nection means, rather than sharing memory through a com-
mon bus.

For each of the aforementioned integration techniques,
the question of optimizing usage of the host processor and
coprocessor resources arises. In a shared command stream or
command driven integration, the coprocessor remains idle
during periods of time when no tasks are being directed to
it, but may become a source of a processing bottleneck
during periods of heavy usage. In a multiprocessor integra-
tion, functions that may be best carried out by the host
processor may be performed by the coprocessor, thus nega-
tively impacting total system performance. It is desirable to
have synergistic .operation of the host processor with the
COPIocessor.

Known DSP implementations integrate the DSP copro-
cessor as a satellite coprocessor to the main processor. Such
implementations have proven to limit DSP functionality and
the end value of the DSP itself, to the customer. DSP
coprocessors typically have a dedicated operating system.
This has resulted in requiring a programmer developing a
host DSP application or a DSP program to be familiar with
the host computer system operating environment, the DSP
operating environment and programming techniques or
algorithms specific to the type of data (e.g. digitized audio
data) being manipulated. In many cases this is inefficient
because a single programmer would not have such skills and
would have to acquire them. For example, a programmer
developing a host DSP application may not have any skills
in the DSP operating environment or in the algorithms used
for manipulating a specific type of data. Conversely, a
programmer developing a DSP program may not have any
skills regarding the host operating environment.

A known technique for simplifying host application
development utilizing a provided system resource is through
an Application Programming Interface (API). An API is
typically a predefined set of function (e.g. macro) calls
which can be used to access and utilize the resource in a
predefined manner. However, such APIs do not address the
situation wherein a host application developer requires flex-
ibility in the manner in which they utilize a resource. If a
host application developer desired to use the resource in an
alternative manner, the API would typically be bypassed
thus requiring skills in programming the resource.

It is an object of the present invention to provide an
environment wherein application and coprocessor program-
mer skills are best utilized. To this end, an environment
where an host DSP application developer need not be
concerned about programming a DSP, and a DSP program

‘developer need not be concerned about programming the

host environment, is desirable.

It is a further object of the present invention to optimize
total system throughput through the division of labor
between a host processor and a coprocessor.

Finally, it is an object of the present invention to provide
for the simultaneous servicing of multiple host applications
through one or more coprocessors.

SUMMARY

A method and apparatus for developing and executing
tasks on a coprocessor, e.g. a digital signal processor, is

5,577,250

3

disclosed. An operating system for the coprocessor utilizes
a teamwork concept. The teamwork concept divides copro-
cessor operating system function between the host processor
and the coprocessor. Thus, a first portion of the coprocessor
operating system is executed by the host processor and a
second portion is executed by the coprocessor. Such a
teamwork operating system optimizes system and coproces-
sor throughput of work.

Further, an Application Programming Interface (API) is
provided to facilitate the development of host application
programs that will utilize the coprocessor. The API is
comprised of a set of function calls which are used to create
and control coprocessor tasks. A Task Programming Inter-
face (TPI) and Task Unit Definition Language (TUDL) are
provided to facilitate the development of coprocessor code
for execution on the coprocessor. The TPI and TUDL
comprise a set of function calls and macros which are used
to facilitate the construction of the operating environment
for coprocessor programs. Communication between a host
application developer and a coprocessor program developer
is provided through a task unit specification document. The
task unit specification document contains the necessary
information for a host application to utilize a particular
COProcessor program.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computer system as may be utilized by
the preferred embodiment of the present invention.

FIG. 2 illustrates a teamwork processing operating envi-
ronment as utilized by the preferred embodiment of the
present invention.

FIG. 3 is a flowchart illustrating the steps required for
constructing a coprocessor task that will utilize the copro-
cessor as performed in an implemented embodiment of the
present invention.

FIG. 4 is a flowchart illustrating the steps required for
removing a coprocessor task from execution on a coproces-
sor as performed in an implemented embodiment of the
present invention. .

FIG. 5 is a flowchart illustrating the steps required for
creating a coprocessor task unit for execution on a copro-
cessor, as utilized in an performed embodiment of the
present invention.

FIGS. 6 outlines an example of a host application utilizing
a DSP coprocessor as may be performed by an implemented
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for controlling a coprocessor,
namely a digital signal processor in a computer system, is
described. In the following description, numerous specific
details are set forth such as opérating system functionality,
in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the
art that such detail is known to those skilled in the art and
that the present invention may be practiced without these
specific details. In other instances, well-known functions
e.g. digital system processing algorithms and functions,
have not been described in detail in order not to unneces-
sarily obscure the present invention.

OVERVIEW OF A COMPUTER SYSTEM IN
THE PREFERRED EMBODIMENT

The preferred embodiment of the present invention may
be practiced on computer systems having alternative con-

15

20

25

30

35

40

45

50

55

60

65

4

figurations. FIG. 1 illustrates some of the basic components
of such a computer system, but is not meant to be limiting
to exclude other components or combinations of compo-
nents. In any event, the computer system illustrated in FIG.
1 comprises a bus or other communication means 101 for
communicating information, a processing means 102 (com-
monly referred to as a host processor) coupled with the bus
101 for processing information, a random access memory
(RAM) or other storage device 103 (commonly referred to
as a main memory) coupled with the bus 101 for storing
information and instructions for the processor 102, a read
only memory (ROM) or other static storage device 104
coupled with the bus 101 for storing static information and
instructions for the processor 102.

Other devices coupled to said bus 101 include a data
storage device 105, such as a magnetic disk and disk drive
for storing information and instructions, an alphanumeric
input device 106 including alphanumeric and other keys for
communicating information and command selections to the
processor 102, a cursor control device 107, such as a mouse,
track-ball, cursor control keys, etc, for controlling a cursor
and communicating information and command selections to
the processor 102, a display device 108 for displaying data
input and output, a digital signal processor (DSP) 109 for
processing DSP resource requests, an audio port 110 for
input and output of audio signals and a telecommunications
port 111 for input and output of telecommunication signals.
In such a computer system configuration, the digital signal
processor 109 is considered a coprocessor to the host
processor 102.

Architecturally, a DSP is very fast integer RISC (Reduced
Instruction Set Computer) based general purpose micropro-
cessor which includes a floating point unit. A fundamental
difference from true general purpose processors, is that a
DSP is designed to perform a Multiply and Accumulate
(MAC) operation very quickly. The MAC operation is very
heavily used in DSP programs. Thus, it should be noted that
DSP host applications may be written that do not require a
DSP coprocessor for execution, but would exploit them if
available.

An embodiment of the present invention is implemented
for use on some of the members of the family of Macintosh®
computers, available from Apple® Computer, Incorporated
of Cupertino, Calif. A coprocessor that may be utilized is any
digital signal processing processor having operating char-
acteristics and functions similar to those found in the
DSP3210 Digital Signal Processor, available from American
Telephone & Telegraph (AT&T) Microelectronics of Allen-
town, Pa.

The remainder of the description will be in reference to
the implemented embodiment. As the DSP coprocessor in
the implemented embodiment has the characteristics of a
general purpose microprocessor, it would be apparent to one
skilled in the art to apply the present invention to coproces-
sors performing various other functions.

Further, as will become apparent in the foregoing descrip-
tion, the preferred embodiment of the present invention is
independent of the DSP used, as hardware specific require-
ments are compartmentalized. Thus, the use of an alternative
DSP would simply require the development of DSP drivers.
As the essential components of the DSP Kernel that execute
on the DSP coprocessor are relatively small and well known,
this represents a well known activity. Of course any DSP
program code written to utilize a specific DSP device would
have to be rewritten or re-compiled.

As described above a DSP coprocessor has characteristics
of a general purpose processor. This includes access 1o local

5,577,250

5

memory, sometimes analogous to system memory, and be
controlled by an operating system. For example, the
DSP3210 DSP coprocessor has an 8 kilobyte internal cache
memory and a general purpose external bus for access to
system memory. From the DSP programmer’s viewpoint the
DSP is a self-contained system that is operating in unison
with the host processor and the host operating system.
However, from the host application programmer’s view-
point, the DSP is a simply a resource which my be called
upon using conventional programming techniques associ-
ated with the host computer system.

SYSTEM ARCHITECTURE

The implemented embodiment utilizes a shared-memory
architecture, which enables the host processor and the DSP
to have access to system resources. The shared-memory
architecture has shown to have the benefits of: reducing
implementation and hardware costs, simplifying and speed-
ing up inter-processor communications and data sharing or
data strcaming, optimizing system throughput and increas-
ing the range of possible applicable functions the DSP can
provide.

A memory model within the implemented embodiment is
divided into local memory and main memory. Local memory
contains data that is frequently accessed by the DSP oper-
ating software (e.g. program data). Main memory contains
less frequently accessed data (e.g. FIFO data). Note that both
local and main memory may be in the same physical
memory or separated by a bus. They both share a common
address space.

The system provides DSP robustness in that it allows
multiple concurrent DSP coprocessor operation, each of
which may be simultaneously accessed by multiple DSP
clients (DSP clients are described in more detail below).
Such DSP robustness will become apparent within the
foregoing description.

The DSP or coprocessor operating system of the imple-
mented embodiment works on a team processing basis. In
particular, careful attention is paid to the division of labor
between the host processor and the DSP. The objective is to
make best and maximum use of all computer system
resources. The overall DSP Operating System architecture is
illustrated in FIG. 2. FIG. 2 provides a view of the functions
of the system architecture and is not intended to represent
any actual organization or interface within functional com-
ponents.

Referring to FIG. 2, Host Application(s) or Client(s) 201
interfaces with a DSP Manager 202. The DSP Manager 202
may be conceptually thought of as a first level toolbox
accessible by application programmers. The DSP Manager
202 executes on the host processor. The Host Application or
Client 201 represents either a specific application or a higher
level toolbox that is being accessed by a host application.
The term client is commonly used to describe a relationship
between a resource and a resource requestor. In this case the
resource being requested is the DSP coprocessor. A toolbox
refers to a predefined set of callable routines that carry out
commonly used functions. Typically such toolboxes are
associated with a particular function, e.g. generating graphi-
cal output. The use of toolboxes is well known to those
familiar with programming in the Apple operating system
environment and is described in detail in the publication
“Inside Macintosh” published by ADDISON-WELSLEY
Publishing Company. This further implies that a host appli-
cation may make usc of the DSP functionality either directly

15

20

25

30

35

40

45

50

55

60

65

6

through the DSP Manager 202 or through a higher level
toolbox.

The DSP Manager 202 provides the host functionality
through which host DSP applications and higher level tool-
boxes access DSP function. The DSP Manager 202 further
interfaces with a DSP Host Driver 204. The DSP Host Driver
204 executes on the host processor and provides specific
functionality required to interface with a particular DSP
coprocessor hardware implementation. The DSP Manager
202 and DSP Host Driver further interface with a Shared
Memory 218. The Shared Memory 218 may be defined as
either local memory or as a combination of both local and
main memory. The local memory is either in system DRAM
or in an optional card or main logic board memory. It is
through this Shared Memory 218 that the DSP Manager 202
and a DSP Kemel 211 communicate.

The DSP Manager 202 is further comprised of an Appli-
cation Programming Interface (API) 205, client and device
mangers 206, I/O services 207, data structure managers 208,
and allocation managers 209. The DSP Manager 202 may
utilize a standard interface used for making toolbox calls.
For example, in the Apple Macintosh environment, a stan-
dard trap interface is used for making toolbox calls. How-
ever, a procedure call mechanism would also work. A set of
macros for interfacing to the DSP are accessible to the
client(s) and are defined and interpreted within the Appli-
cation Programming Interface (API) 205. Note that a macro
in this context refers to a callable portion of code that will
perform a predetermined function. Macros and their use are
known to those skilled in the art.

The three major services of the DSP Manager are related
to I/O services 207, client and device management 206, and
data structure management 208. These services make calls
on allocation managers that the are lowest level of the DSP
Manager 202. The allocation managers 209 are responsible
for DSP cache and local memory allocation, and for I/O
resource allocation. I/O services 207 are for handling data
streams being sent to or received from the DSP in real time.
Client and device managers 206 are responsible for keeping
track of available devices (i.e. both processing and I/O
resources) and clients. Client management allows for mul-
tiple clients to share the available resources without con-
flicts.

The above-described components 201-209 are all asso-
ciated with the host processor. The foregoing items will be
primarily executing on the host processor. Referring back to
FIG. 2, a Task Definition Language (TUDL) 220 is used to
construct a DSP Task Unit 210. The TUDL 220 provides a
set of macros for constructing a DSP Task Unit which are
further used to facilitate the construction of a DSP Task. The
TUDL 210 further provides generic information for utilizing
the DSP Task Unit in various configurations. This generic
information is used by the DSP Manager 202 to create the
desired DSP Task. The TUDL macros execute on the host
processor but may cause routines to execute on the DSP
COProcessor.

The TUDL macros eliminate the need for DSP program-
mers to include low level, e.g. memory management, DSP
operating instructions in their programs. It should be noted
that the TUDL macros may further be stored in sets and
invoked as TUDL scripts. Such scripts may be used to
perform often used TUDL functionality.

A DSP Task 221 interfaces to the DSP Kernel 211. The
DSP Task 221 represents a particular function or program
that has been written for the DSP coprocessor. The DSP Task
221 is discussed in greater detail below. The DSP Kernel 211

5,577,250

7

resides in a storage location directly accessible by the DSP
coprocessor (c.g. local memory). In the implemented
embodiment, such storage locations are within local
memory and the cache and/or Read Only Memory (ROM) of
the DSP3210 DSP coprocessor.

In an analogous fashion to the DSP Manager 202, the DSP
Kernel 211 interfaces to a DSP Kernel Driver 212 and
Shared Memory 218. The DSP Kemel Driver 212 contains
hardware dependant routines and resides in local or cache
memory. The DSP Kernel Driver 212 communicates to the
DSP Host Driver 204 via the Shared Memory 218 and
through direct interrupts 219. Communication between the
DSP Manager 202 and the DSP Kernel 211 is provided for
by flags, data and semaphores in the Shared Memory 218
and by the interrupts 219. The DSP Kernel 211 is further
comprised of Task Programming Interface (TPI) 213, I/O
services 214, control services 215, caching services 216, and
executive 217.

Like the DSP Manager 202, the DSP Kernel 211 also has
an interface layer, namely the Task Programming Interface
(TPI) 213. The TPI 213 provides directives to the DSP
Kernel 211 for constructing the run time environment for the
DSP Task. The TPI 213 may work in a similar fashion as the
DSP Manager: a trap or procedure call mechanism is used to
make calls on the DSP Kemel from the DSP Task Unit. The
TPI 213 executes on the DSP coprocessor but may cause
routines to execute on the host processor.

The DSP Kernel 211 also provides services to a DSP Task,
namely I/O services 214 including data stream and FIFO
management to other tasks or processors, control services
215, and caching operations 216 for DSP cache memory.
The underlying function of the DSP Kermnel is an executive
layer 217, which is responsible for managing DSP Task
sequencing and other control functions.

As noted above, communication between the DSP Man-
ager 202 and the DSP Kemel 211 transmitted through the
Shared Memory 218 and may be initiated by interrupts 219
or by flags or semaphores. The DSP Host Driver 204
executes on the host processor while the DSP Kemel Driver
212 executes on the DSP coprocessor.

An example of communication required between the DSP
Manager 202 and the DSP Kernel 211 may result from the
abnormal termination of a task executing on the DSP. In
such a situation the Host Application/Client and operating
system must be informed of the termination. Accordingly,
the DSP Kernel 211 would cause the DSP Driver 212 to
generate an interrupt to the DSP Host Driver 204. Further,
the DSP Kernel 212 would place status/error information in
a predetermined location or buffer in Shared Memory 218.
Upon receipt of the interrupt, the Host Driver 204 would
interrogate the predetermined location or buffer in Shared
Memory in order to carry out a desired responsive action.
This may include callbacks to the DSP Manager 202 and/or
Host Application/Client 201.

In the implemented embodiment, the DSP Kernel Driver
212 and the DSP Host Driver 204 are stored together as one
driver. The DSP Host Driver 204 would conform to standard
device driver requirements associated with the host operat-
ing system. The DSP Kernel Driver 212 performs a similar
driver function for the DSP coprocessor. Further, it would
contain any DSP code that is hardwarc implementation
dependent, as well as booting, restart and error handling
code.

FIG. 2 further illustrates the dual programming interface
of the implemented embodiment: the applications program-
ming interface (API) 205 in the DSP Manager, the Task

5

10

20

25

30

35

40

45

50

55

60

65

8

Programming Interface (TPI) 213 in the DSP Kernel 211 and
Task Unit Definition Language (TUDL) 220. These inter-
faces are completely separate and designed to be used by
different programmers. Specifically, it is not necessary for a
programmer to have skills in both host application and DSP
programming. The programmers may communicate with
each other through a DSP Task Unit Specification document.
This document provides a vehicle for transferring all the
information necessary to ensure a correct interface between
the host client and a DSP Task Unit. The contents of a DSP
Task Unit Specification document will be discussed below in
more detail.

Host DSP Application Development

When a host application program utilizes a DSP copro-
cessor, a DSP Task is constructed. A DSP Task may be built
by the host application programmer within the context of the
application that is utilizing the DSP. A DSP Task may also
be built by a tool in a toolbox. In any event, a task is built
by making macro calls to the DSP Manager via the Appli-
cation Programming Interface (API). Using these macro
calls, a task structure is created and a desired DSP Task Unit
inserted into the task structure. Other macro calls are used to
activate, query status and deactivate a DSP Task.

The task structure is typically comprised of a task iden-
tifier, associated flags, and a pointer to a linked list of DSP
Task Units. DSP Task Units comprise the DSP code, vari-
ables, input buffer, output buffer or other information for
creating the DSP Task which is executed on the DSP
COprocessor.

As described above, host applications may typically use
tools from a toolbox. The writing of host applications to use
a toolbox and for the creation or extension of a toolbox, in
the implemented embodiment is described in the aforemen-
tioned “Inside Macintosh” publication. Thus, no further
discussion of using a toolbox is deemed necessary.

In the implemented embodiment, a host DSP application
or client can be designed to operate in three different ways:
1) recognize and use the DSP if it is there, for enhanced
performance of specific application functions, 2) require the
DSP, and not run at all if no DSP is available or 3) utilizing
the DSP by making calls to a higher level toolbox.

FIG. 3 is a flowchart illustrating the steps required for
constructing a DSP Task. First, a DSP client (e.g. the host
application) must establish the existence of a DSP via a DSP
query status, step 301. It is then determined if a DSP
resource is available, step 302. This test is made because for
platform independence of applications. Thus, the application
may exploit the DSP coprocessor if it exists and could
decide whether or not to continue processing if it does not
exist. If the DSP resource is not available, a decision is made
as to continuing the application, step 303. If the application

“will not execute without the DSP, it is terminated, step 304.

Otherwise, the application continues wherein the DSP func-
tionality is performed, potential at a reduced level, by the
host processor, step 305.

If the DSP resource is available, the client will sign-in
with the DSP device(s), step 306. This procedure allows a
given task to be associated with a particular client. This is
done for client management, error handling and controlling
DSP Task access.

Next, a new (empty) DSP Task structure is created, step
307. This involves the allocation of memory for storing the
task data structure. Resources from DSP Task Units are then
allocated and inserted into the DSP Task structure from
storage, step 308. Information stored in the Task Unit from
the TUDL is used in conjunction with application directives
via the API to construct the DSP Task. Information concern-

5,571,250

9

ing the DSP Task Units are provided to the host programmer
from the DSP Task Unit Specification Document. Once DSP
Task Unit insertion is completed, the DSP Task is then
placed into a DSP Task run list for execution by the DSP
coprocessor, step 309. When the DSP Task is inserted into
the DSP Task run list, it is inactive, i.e. it is not flagged for
execution. The DSP Task is then activated for execution,
stcp 310. This would involve setting an active/inactive
control flag associated with the task.

Further API macros are provided within the preferred
cmbodiment to query the status of, control, modify or
terminate a task. FIG. 4 is a flowchart outlining the steps
required for terminating a task. Special steps are required for
terminating a task due to the storage allocations made for
storing the various buffers and other storage media used
during the execution of the task. First, the task is deacti-
vated, step 401. This will typically involve clearing the
active/inactive control flag for the DSP Task. A deactivation
acknowledgement is then queried, step 402. The host pro-
cessor must wait for verification of completion of a task that
may be currently executing. This will prevent removal of a
DSP Task that is still executing (which may cause the entire
system to abnormally terminate). Next, the DSP Task is
removed from the DSP Task run list, step 403. All task
allocated resources are then deallocated, step 404. This
would include memory allocated for the task structure itself
and for local and system memory allocated for the DSP Task
and data or I/O buffers. Finally, the client must sign-out from
the DSP coprocessor, step 405.

DSP Application Development

DSP Task Units isolate DSP programming from host
application programming. However, DSP Task Units are
installed by the host application as described above. There-
fore, DSP programmers must document some basic infor-
mation about each program unit. Such information would be
included in a DSP Task Unit Specification Document. With
such a DSP Task Unit Specification Document, the host
application programmer would have the required informa-
tion for writing a host application. The basic information
would include task unit identifier information, /O buffer
definition information and control and parameter format and
function and a brief description of the functions provided by
the DSP Task Unit.

The development of the actual DSP program code may be
distinct from the construction of a DSP Task Unit. The DSP
program code is comprised of instructions specific to the
DSP. The implemented embodiment of the present invention
does provide development facilities, e.g. compilers, assem-
blers and debuggers, for coding DSP programs. Such pro-
gram development facilities are known in the art.

FIG. 5 is a flowchart exemplifying steps required for DSP
Task Unit creation. Other or different steps may be taken
depending on an individual programming style, program-
ming methodology or the operation of a particular develop-
ment toolset. In any event, the creation of a DSP Task Unit
starts with the development (i.e. writing and debugging) of
a desired DSP program, step 501. It is understood that the
DSP program would be designed with respect to the under-
lying constructs of DSP Task Unit and the macros provided
in the TPI and TUDL. The remainder of the steps regard
actual construction of a Task Unit structure and are imple-
mented using TPI and TUDL calls and macros. First, a new
Task Unit structure is created, step 502. This will result in
the allocation of memory for the program unit structure and
insertion of information into the header field. The DSP
program code, data, variables, etc. are inserted into the DSP
Task Unit structure, step 503. Next, the DSP Task Unit is

10

15

20

25

30

35

40

45

50

55

60

65

10

prepared for used by a DSP Host Application or Client by
compiling, and/or assembling and linking, step 504. Finally,
the constructed Task Unit is placed in storage, e.g. a disk,
step 505. It is from the disk storage location that the Task
Unit is accessible by the host application programmer.
Example of DSP Host Application

FIG. 6 illustrates a host DSP application. The DSP appli-
cation will take previously stored audio data and play it
back. Compressed audio data is stored on a disk 601. Such
compression of the audio data itself would comprise a DSP
Task. In any event, the compressed audio data 601 would be
provided to an input FIFO buffer 602. The input FIFO 602
would be further coupled to a DSP Task 603 for decom-
pressing the audio data. The output, i.e. the decompressed
audio data, would then be fed into a second FIFO buffer 604.
The FIFO 604 would then coupled to speaker 605 for
playback of the audio data.

In this example, the decompress audio data DSP Task Unit
603 would be created using the method described with
respect to Task Unit creation. The elements surrounding the
DSP Task Unit 603, namely the compressed audio data 601
and FIFOs 602 and 604 would be defined and associated to
DSP Task 603 by the host application or client using a series
of API calls to both the DSP Manager and other host
operating system toolboxes. Thus, the decompression algo-
rithm program code is developed separately from the audio
playback Task Unit code.

Thus, a method and apparatus utilizing a teamwork oper-
ating environment and which provides for separate program-
ming interfaces for host application developers and copro-
cessor program developers, is disclosed.

We claim:

1. A computer system comprising:

a) a memory containing an application program and a
coprocessor operating system, wherein the coprocessor
operating system includes a host portion and a copro-
cessor portion, wherein said host portion provides a
plurality of macros for constructing coprocessor tasks;

b) a storage device containing a plurality of coprocessor
task units;

c) a processor coupled to said memory and said storage
device, wherein said processor is configured to execute
said application program and said host portion, wherein
execution of said application program causes said pro-
cessor to execute said plurality of macros, wherein
execution of said plurality of macros causes said pro-
cessor to construct a plurality of coprocessor tasks,
wherein each coprocessor task of said plurality of
coprocessor tasks includes information inserted from at
least one coprocessor task unit of said plurality of
coprocessor task units, wherein execution of said mac-
ros further causes said processor to insert said plurality
of coprocessor tasks into a run list; and

d) a coprocessor coupled to said memory and said storage
device, said coprocessor being configured to execute
said coprocessor portion, wherein execution of said
coprocessor portion causes said coprocessor to sequen-
tially execute said plurality of coprocessor tasks in said
run list.

2. The computer system as recited in claim 1 wherein each

coprocessor task unit of said plurality of coprocessor task
units is comprised of:

a) a header portion for identifying said coprocessor task
unit;

b) coprocessor data and instructions;

¢) input/output information; and

5,577,250

11

d) requirements information for building an execution
environment for said coprocessor task unit.

3. The computer system as recited in claim 2 wherein each
coprocessor task of said plurality of coprocessor tasks is
comprised of:

a) a header portion for identifying said coprocessor task;

b) coprocessor data and instructions;

c) input/output, status and control information, wherein
said input/output, status and control information is
generated from said requirements information of said
coprocessor task unit.

4. The computer system as recited in claim 1 wherein the

coprocessor portion is comprised of:

a) a task programming interface portion, said task pro-
gramming interface portion comprised of a plurality of
coprocessor directive macros stored on said storage
device;

b) a task unit definition portion, said task unit definition
portion comprised of a plurality of task unit construc-
tion macros stored on said storage device; and

c) a coprocessor driver portion, the coprocessor executing
said coprocessor driver portion to interface with said
processor.

5. The computer system as recited in claim 3 wherein said

host portion is further comprised of:
a) a host application interface portion, said host applica-
tion interface portion being comprised of a plurality of
coprocessor task creation and control macros stored on
said storage device; and
b) a host driver portion, the processor executing said host
driver portion to interface with said coprocessor.
6. The computer system as recited in claim 5 further
comprising a plurality of interrupt lines coupled to said
processor and said coprocessor, wherein execution of said
host driver portion causes said processor to generate mes-
sage signals over said interrupt lines to said coprocessor,
wherein execution of said coprocessor driver portion causes
said coprocessor to generating message signals over said
plurality of interrupt lines to said processor.
7. The computer system as recited in claim 1 wherein said
coprocessor is a Reduced Instruction Set Computer (RISC)
Processor.
8. The computer system as recited in claim 1 wherein said
coprocessor is a Digital Signal Processing (DSP) processor.
9. A method for utilizing a coprocessor in a computer
system comprising a processor, said coprocessor, a memory
connected to the processor and the coprocessor, said copro-
cessor having an operating system, said method comprising
the steps of:
a) providing a coprocessor task unit to said processor, said
coprocessor task unit including a set of coprocessor
instructions and data, coprocessor task building infor-
mation and coprocessor directives;
b) executing a host portion of said operating system on
said processor, wherein execution of said host portion
causes said processor to perform the steps of
bl) constructing a coprocessor task from said copro-
cessor task unit, said coprocessor task including said
set of coprocessor instructions, and

b2) providing said coprocessor task to said coprocessor
for execution; and

c) executing a coprocessor portion of said operating
system on said coprocessor, wherein execution of said
coprocessor portion causes said coprocessor to perform
the step of

5

10

15

20

50

60

65

12

cl) executing said set of coprocessor instructions con-
tained in said coprocessor task.

10. The method as recited in claim 9 wherein said step of
constructing a coprocessor task from said coprocessor task
unit is further comprised of the steps of:

a) creating a coprocessor task structure;

b) generating input/output, status and control information
from said coprocessor task building information of said
coprocessor task unit;

¢) inserting said input/output, status and control informa-
tion into said coprocessor task structure; and

d) inserting said set of coprocessor instructions and data
into said coprocessor task structure.
11. The method as recited in claim 9 wherein said step of
providing said coprocessor task to said coprocessor for
execution is further comprised of the steps of:

a) inserting said coprocessor task into a coprocessor run

list; and

b) activating said coprocessor task.

12. The method as recited in claim 9 wherein said step of
executing said coprocessor task is further comprised of the
steps of:

a) providing said coprocessor task to said coprocessor

portion of said operating system;

b) building a run time environment for said set of copro-

cessor instructions from said coprocessor directives of
said coprocessor task unit; and

c) executing said set of coprocessor instructions.

13. The method as recited in claim 9 wherein said
coprocessor is a Reduced Instruction Set Computer (RISC)
processor, wherein said step of executing said set of copro-
cessor instructions is performed by executing said set of
coprocessor instructions on said Reduced Instruction Set
Computer processor.

14. The method as recited in claim 9 wherein said
coprocessor is a Digital Signal Processing (DSP) processor,
wherein said step of executing said set of coprocessor
instructions is performed by executing said set of coproces-
sor instructions on said Digital Signal Processing processor.

15. In a computer system comprising a processor, a
coprocessor, and a memory coupled to said processor and
said coprocessor, wherein said computer system operation is
controlled by an operating system, wherein said coprocessor
operation is controlled by a coprocessor operating system, a
method for preparing tasks for said coprocessor comprising
the steps of:

a) executing a plurality of task definition language macros
on said processor, wherein execution of said plurality
of task definition language macros causes said proces-
sor o create a coprocessor task unit, said coprocessor
task unit having one or more coprocessor instructions
that are executable on said coprocessor;
b) executing an application program on said processor,
wherein execution of said application program causes
said processor to execute macros in a host portion of
said coprocessor operating system, wherein execution
of said macros in said host portion causes said proces-
sor to perform the steps of
b1) constructing a coprocessor task for executing said
coprocessor task unit, said coprocessor task includ-
ing said one or more coprocessor instructions;

b2) inserting said coprocessor task into a coprocessor
task run list; and

b3) activating said coprocessor task in said coprocessor
task run list for execution.

5,577,250

13

16. The method as recited in claim 15 wherein execution
of said plurality of task definition language macros causes
said processor to create said coprocessor task unit by caus-
ing said processor to perform the steps of:

a) generating a set of coprocessor instructions for carrying

out a desired function;

b) creating a task unit structure; and

c) inserting into said task unit structure input/output,

variable and data information for said set of coproces-
sor instructions.

17. The method as recited in claim 16 wherein said step
of constructing said coprocessor task is further comprised of
the steps of:

a) creating a coprocessor task structure; and

b) inserting information from said coprocessor task unit

into said coprocessor task structure.

18: The method as recited in claim 16 wherein said step
of generating a set of coprocessor instructions is performed
by generating a set of coprocessor instructions executable on
a Reduced Instruction Set Computer (RISC) processor.

19. The method as recited in claim 16 wherein said step
of generating a set of coprocessor instructions is performed
by generating a set of coprocessor instructions executable on
a Digital Signal Processing (DSP) processor.

20. The method as recited in claim 15 further comprising
the step of executing a coprocessor portion of said copro-
cessor operating system on said coprocessor, wherein execu-
tion of said coprocessor portion causes said coprocessor to
execute any active tasks in said coprocessor task run list,
including said coprocessor task.

10

15

20

25

30

14

21. A method for servicing a request to perform a function
in a computer system, wherein the computer system includes
a processor, the method comprising the steps of:

a) causing a said processor to determine whether a copro-

cessor is present in said computer system;

b) if a coprocessor is not present in said computer system,
then causing said processor to perform said function;

c) if a coprocessor is present in said computer system,
then
cl) causing a processor to execute macros in a host
portion of a coprocessor operating system, wherein
execution of said macros in said host portion causes
said processor to perform the steps of
i) constructing a coprocessor task for executing said
function, said coprocessor task including said one
Or more coprocessor instructions;
ii) inserting said coprocessor task into a coprocessor
task run list; and
iii) activating said coprocessor task in said copro-
cessor task run list for execution; and
c2) executing a coprocessor portion of said coprocessor
operating system on said coprocessor, wherein
execution of said coprocessor portion causes said
coprocessor to execute any active tasks in said
coprocessor task run list, including said coprocessor
task.

